
Machine learning techniques
for analysis of photometric data from
the Open Supernova catalog

M.V. Kornilov1,2 M.V. Pruzhinskaya1 K.L. Malanchev1,2 E.E.O. Ishida3

F. Mondon3 A.A. Volnova4 V.S. Korolev5

October, 9th 2018
1Sternberg Astronomical Institute, Lomonosov Moscow State University

2National Research University Higher School of Economics

3Université Clermont Auvergne

4Space Research Institute

5Zhukovsky Central Aerohydrodynamic Institute



Introduction



Present state of astronomical data

Too much data is a problem

• LSST claims to produce ∼ 10PB per night
• 106 new SN per operation year
• Time-domain astronomy
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Machine learning

Arthur Samuel (1959, doi: 10.1147/rd.33.0210)

ML is a field of computer science that gives computer
systems the ability to ”learn” with data, without being
explicitly programmed.
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Machine learning

Tom Mitchel (1997, ”Machine Learning”, McGraw Hill)

A computer program is said to learn from experience E with
respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.
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Anomaly detection

Anomalies are data patterns that have different data characteristics
from normal instances.
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Anomaly detection algorithms

• Supervised and unsupervised
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SN Anomaly Detection



The Open Supernova catalog

• https://sne.space
• Meta info: 50K
• Light curves: 12K, only about 2000 are useful for us.
• Spectra: 6K

• Pros:
• It is open
• It is supernova catalog

• Cons:
• Total mess

6

https://sne.space


Homogenize the data

Machine learning algorithms usually work with homogeneous data

• Every input sample is multidimensional vector
• All the vectors have the same length
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Homogenize the data

The Open Supernova catalog

• Unevenly distributed flux measurements
• Only a few passbands usually available per light curve
• For each LC we have different time span before the maximum
• Unreliable measurement accuracy estimations
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Homogenize the data

Gauss process interpolation

• Commonly used technique to interpolate unevenly distributed
data onto uniform grid.

• Have to account for multiple passbands
• Have to deal with extrapolation
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Improved Gauss process interpolation (PTF11dec)
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• Interpolate unevenly multiband distributed data
• https://github.com/matwey/gp-multistate-kernel
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Homogenize the data

Coping with the photometric systems

• We use gri passbands (most of the LCs have measurements
there)

• g′r′i′ considered to be the same as gri
• Interpolated BRI light curves converted to gri by Lupton ad-hoc
equations (2005).
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Homogenize the data

Data normalization

• Each light curve is 360 points (3 passbands, 120 days)
• Interpolation parameters (about 10 values)
• Normalize light curve (another column)
• Input dimension is close to 400
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Dimensionality reduction: t-SNE
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• Nonlinear dimensionality reduction technique.
• van der Maaten, L. and Hinton, G. ”Visualizing High-Dimensional
Data Using t-SNE” Journal of Machine Learning Research (2008)

• Let p(xi|xj) ∼ exp
(
− 1
2 ||xi − xj||2

)
in high-dimensional space and

find yi in low-dimensional space to keep distributions ”close”.
• Cons: O(N2) complexity 13



Isolation forest algorithm
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• Anomaly isolation algorithm
• Liu, F. et al. ”Isolation-based anomaly detection” ACM TKDD
• Do not rely on ”normal data” distribution
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Isolation forest algorithm
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Results



SN 91-T: SN 2013cv
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• SN 91-T looks similar to Ia. The issue that it is brighter.
• Cenko, S. et al., ATel 8909 (2016)
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SN 91-T: SN 2016bln
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• Cao, Yi et al., AJ, Vol. 823, Issue 2, 147, 13 pp. (2016)
doi:10.3847/0004-637X/823/2/147
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SLSN-II: SN1000+0216
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• Cooke, J et al. Nature, Volume 491, Issue 7423, pp. 228-231 (2012)
doi:10.1038/nature11521
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AGN: SN2006kg
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Binary microlensing event: Gaia16aye
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• Wyrzykowski, L. et al. ATel 9507 (2016)
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Questions?
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