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Introduction



Present state of astronomical data

Too much data is a problem
- LSST claims to produce ~ 10PB per night
- 10® new SN per operation year

- Time-domain astronomy



Machine learning

Arthur Samuel (1959, doi: 10.1147/rd.33.0210)

ML is a field of computer science that gives computer
systems the ability to "learn” with data, without being
explicitly programmed.



Machine learning

Tom Mitchel (1997, "Machine Learning”, McGraw Hill)

A computer program is said to learn from experience E with
respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.



Anomaly detection

Anomalies are data patterns that have different data characteristics
from normal instances.



Anomaly detection algorithms

- Supervised and unsupervised



SN Anomaly Detection



The Open Supernova catalog

- https://sne.space
- Meta info: 50K
- Light curves: 12K, only about 2000 are useful for us.
- Spectra: 6K
+ Pros:
- Itis open
- It is supernova catalog
- Cons:
- Total mess


https://sne.space

Homogenize the data

Machine learning algorithms usually work with homogeneous data

- Every input sample is multidimensional vector

- All the vectors have the same length



Homogenize the data

The Open Supernova catalog

- Unevenly distributed flux measurements
- Only a few passbands usually available per light curve
- For each LC we have different time span before the maximum

- Unreliable measurement accuracy estimations



Homogenize the data

Gauss process interpolation
- Commonly used technique to interpolate unevenly distributed
data onto uniform grid.
- Have to account for multiple passbands

- Have to deal with extrapolation



Improved Gauss process interpolation (PTF11dec)
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- Interpolate unevenly multiband distributed data
- https://github.com/matwey/gp-multistate-kernel


https://github.com/matwey/gp-multistate-kernel

Homogenize the data

Coping with the photometric systems
- We use gri passbands (most of the LCs have measurements
there)
- g'r'I’ considered to be the same as gri

- Interpolated BRI light curves converted to gri by Lupton ad-hoc
equations (2005).
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Homogenize the data

Data normalization

- Each light curve is 360 points (3 passbands, 120 days)
- Interpolation parameters (about 10 values)
- Normalize light curve (another column)

- Input dimension is close to 400



Dimensionality reduction: t-SNE
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- Nonlinear dimensionality reduction technique.
- van der Maaten, L. and Hinton, G. "Visualizing High-Dimensional
Data Using t-SNE” Journal of Machine Learning Research (2008)
- Let p(xi|x;) ~ exp (—3|[x; — ;||*) in high-dimensional space and
find y; in low-dimensional space to keep distributions "close”.
- Cons: O(N?) complexity -



Isolation forest algorithm

- Anomaly isolation algorithm
- Liu, F. et al. "Isolation-based anomaly detection” ACM TKDD

- Do not rely on "normal data” distribution
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Isolation forest algorithm
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Results




SN 91-T: SN 2013cv

Flux, relative units
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- SN 91-T looks similar to la. The issue that it is brighter.

- Cenko, S. et al,, ATel 8909 (2016)
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SN 91-T: SN 2016bln
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- Cao, Yi et al, A), Vol. 823, Issue 2, 147,13 pp. (2016)
d0i:10.3847/0004-637X/823/2/147



SLSN-II: SN1000+0216
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- Cooke, J et al. Nature, Volume 491, Issue 7423, pp. 228-231(2012)
doi:10.1038/nature11521



AGN: SN2006kg
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Binary microlensing event: Gaial6aye
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- Wyrzykowski, L. et al. ATel 9507 (2016)
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Questions?
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